Electrostatic self-assembly of macroscopic crystals using contact electrification.

نویسندگان

  • Bartosz A Grzybowski
  • Adam Winkleman
  • Jason A Wiles
  • Yisroel Brumer
  • George M Whitesides
چکیده

Self-assembly of components larger than molecules into ordered arrays is an efficient way of preparing microstructured materials with interesting mechanical and optical properties. Although crystallization of identical particles or particles of different sizes or shapes can be readily achieved, the repertoire of methods to assemble binary lattices of particles of the same sizes but with different properties is very limited. This paper describes electrostatic self-assembly of two types of macroscopic components of identical dimensions using interactions that are generated by contact electrification. The systems we have examined comprise two kinds of objects (usually spheres) made of different polymeric materials that charge with opposite electrical polarities when agitated on flat, metallic surfaces. The interplay of repulsive interactions between like-charged objects and attractive interactions between unlike-charged ones results in the self-assembly of these objects into highly ordered, closed arrays. Remarkably, some of the assemblies that form are not electroneutral-that is, they possess a net charge. We suggest that the stability of these unusual structures can be explained by accounting for the interactions between electric dipoles that the particles in the aggregates induce in their neighbours.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrostatic self-assembly of polystyrene microspheres by using chemically directed contact electrification.

Herein we describe a process—based on contact electrification and electrostatic interactions—that directs the selfassembly of chemically modified polystyrene microspheres to form three-dimensional microstructures. When two solid surfaces are brought into contact and separated, charge is often transferred from one surface to the other in a process known as contact electrification. 2] We can pred...

متن کامل

Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets.

This Review discusses ionic electrets: their preparation, their mechanisms of formation, tools for their characterization, and their applications. An electret is a material that has a permanent, macroscopic electric field at its surface; this field can arise from a net orientation of polar groups in the material, or from a net, macroscopic electrostatic charge on the material. An ionic electret...

متن کامل

Contact electrification studies using atomic force microscope techniques

Contact electrification measurements using atomic force microscopy techniques were performed using micrometer-sized spheres made of polystyrene and flat substrates of either freshly cleaved, highly oriented pyrolytic graphite ~HOPG! or a 0.2-mm-thick Au@111# film grown on mica. The polystyrene/HOPG interaction exhibited significant electrostatic charging when compared to the polystyrene/Au syst...

متن کامل

Nanocontact electrification: patterned surface charges affecting adhesion, transfer, and printing.

Contact electrification creates an invisible mark, overlooked and often undetected by conventional surface spectroscopic measurements. It impacts our daily lives macroscopically during electrostatic discharge and is equally relevant on the nanoscale in areas such as soft lithography, transfer, and printing. This report describes a new conceptual approach to studying and utilizing contact electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature materials

دوره 2 4  شماره 

صفحات  -

تاریخ انتشار 2003